Vestibular Facilitation of Optic Flow Parsing

نویسندگان

  • Paul R. MacNeilage
  • Zhou Zhang
  • Gregory C. DeAngelis
  • Dora E. Angelaki
چکیده

Simultaneous object motion and self-motion give rise to complex patterns of retinal image motion. In order to estimate object motion accurately, the brain must parse this complex retinal motion into self-motion and object motion components. Although this computational problem can be solved, in principle, through purely visual mechanisms, extra-retinal information that arises from the vestibular system during self-motion may also play an important role. Here we investigate whether combining vestibular and visual self-motion information improves the precision of object motion estimates. Subjects were asked to discriminate the direction of object motion in the presence of simultaneous self-motion, depicted either by visual cues alone (i.e. optic flow) or by combined visual/vestibular stimuli. We report a small but significant improvement in object motion discrimination thresholds with the addition of vestibular cues. This improvement was greatest for eccentric heading directions and negligible for forward movement, a finding that could reflect increased relative reliability of vestibular versus visual cues for eccentric heading directions. Overall, these results are consistent with the hypothesis that vestibular inputs can help parse retinal image motion into self-motion and object motion components.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional correlates of optic flow motion processing in Parkinson’s disease

The visual input created by the relative motion between an individual and the environment, also called optic flow, influences the sense of self-motion, postural orientation, veering of gait, and visuospatial cognition. An optic flow network comprising visual motion areas V6, V3A, and MT+, as well as visuo-vestibular areas including posterior insula vestibular cortex (PIVC) and cingulate sulcus ...

متن کامل

Acoustic facilitation of object movement detection during self-motion.

In humans, as well as most animal species, perception of object motion is critical to successful interaction with the surrounding environment. Yet, as the observer also moves, the retinal projections of the various motion components add to each other and extracting accurate object motion becomes computationally challenging. Recent psychophysical studies have demonstrated that observers use a fl...

متن کامل

Reduction in sensitivity to radial optic-flow congruent with ego-motion

Visual motion, such as radial optic flow, is an important cue for perceiving direction during ego-motion. Several previous studies have reported that the perceived speed of a radial optic flow is underestimated when the represented ego-motion direction between radial optic flow and non-visual (such as vestibular or/and proprioceptive) information is congruent. In the present study, we examined ...

متن کامل

Convergence of vestibular and visual self-motion signals in an area of the posterior sylvian fissure.

Convergence of visual motion information (optic flow) and vestibular signals is important for self-motion perception, and such convergence has been observed in the dorsal medial superior temporal (MSTd) and ventral intraparietal areas. In contrast, the parieto-insular vestibular cortex (PIVC), a cortical vestibular area in the sylvian fissure, is not responsive to optic flow. Here, we explore o...

متن کامل

Optic flow detection is not influenced by visual-vestibular congruency

Optic flow patterns generated by self-motion relative to the stationary environment result in congruent visual-vestibular self-motion signals. Incongruent signals can arise due to object motion, vestibular dysfunction, or artificial stimulation, which are less common. Hence, we are predominantly exposed to congruent rather than incongruent visual-vestibular stimulation. If the brain takes advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012